
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 38:647–675 (DOI: 10.1002/�d.236)

Iterative explicit simulation of 1D surges and dam-break �ows
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SUMMARY

The one-dimensional Saint Venant equations for shallow-water �ows are used to simulate the �ood
wave resulting from the sudden opening (or closure) of a gate or collapse of a dam. An iterative
explicit characteristics-based <nite-di=erence method, based on the explicit <nite analytic method, is
proposed to discretize the dynamic equation, and the conservative control volume method is used for
the discretization of the continuity equation. Surge and dam-break �ows in a horizontal, rectangular
and frictionless channel were <rst considered, under such conditions the analytic solutions exist. For the
surge simulation, numerical results of the proposed scheme are nearly identical to those obtained from
the Preissmann scheme. For the dam-break simulations addressing three ratios of tailwater depth to water
depth in the reservoir, the proposed scheme, as compared with the analytic solutions, yields better results
than those obtained by the MacCormack scheme, the Gabutti scheme, and Jha et al.’s �ux splitting
scheme (J. Hydraul. Res. 1996; 34(5):605–621). As the depth ratio approaches zero, the accuracy of
the proposed scheme is still satisfactory, even with the dry-bed condition. Investigations then were made
for more realistic dam-break �ow waves propogating in a sloped and frictional channel. Lacking analytic
solutions, the simulating results from the proposed scheme as well as those from Chen’s scheme (J.
Hydraul. Div. 1980; 106(HY4):535–556) were compared with the laboratory data collected in 1960–
1961 at the United States Army Engineer Waterways Experiments Station (WES). An assumed initial
�ow was required for the computer-simulated condition in Chen’s model. However, this is not the case
in the proposed model, i.e., a real dry-bed condition was set as the initial condition in the downstream
channel of the dam. The consistency between the two simulated results is obvious compared with the
experimental data. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The task of estimating the movement of a surge (or shock) or a dam-break wave, resulting
from the sudden upstream opening (or the sudden downstream closure) of a sluice gate for
emergencies or dam failures, has occupied the attention of researchers as well as practicing
engineers for several decades. The determination of the surge height at di=erent locations
along the channel provides important information for the design of the bank height. The
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dreadful disaster due to the dam-break �ood wave reminds the decision- makers to pay more
attention to the dam-safety problem.
The rapid varied �ows in open channels, with steep fronts resulting from surges or dam-

break waves, are often simulated as one-dimensional (1D) �ows. Such �ows can be described
by the Saint Venant equations (shallow-water equations), which are a set of non-linear hy-
perbolic partial di=erential equations. However, the analytic solutions of these equations are
not available, except for certain special simpli<ed conditions. Therefore, consistent e=orts
have been made to develop numerical schemes to solve the equations. There are three basic
approaches to compute the equations of �ows with steep fronts: the shock <tting, pseudo-
viscosity, and ‘through’ (shock capturing) methods [1]. The shock <tting method requires
internal boundary conditions to determine the position and the associated �ow characteristics
of the shock, yielding a complicated solution algorithm. The pseudo-viscosity method, which
is a common practice adopted in the non-dissipative <nite-di=erence schemes, operates by
adding an arti<cial di=usion term to suppress the oscillation near the front. The ‘through’
method is most often used in practice because it solves the Saint Venant equations directly
without any particular arrangements of the algorithm. The proposed scheme in this paper
belongs to the ‘through’ method.
Many shock capturing schemes are available as described in the literature below. To check

their applicability to the real conditions of wave propagations, the simulated results were
usually compared to the analytical solutions of the shocks propagating in a 1D horizon-
tal, frictionless channel <rst, then to the experimental data in a sloped, frictional channel.
The numerical schemes using the <nite-di=erence method include the Preissmann four-point
scheme [2], Holly–Preissmann two-point together with the reach-back characteristics scheme
[3], MacCormack scheme [4–7], Lambda scheme [7], Gabutti scheme [7], Beam-Warming
scheme and its modi<cations [8–10], �ux di=erence splitting scheme [11–14], Godunov-type
upwind scheme with a Riemann solver [13; 15–19], modi<ed Godunov scheme [20], total vari-
ation diminishing (TVD) scheme [21–23], and semi-Lagrangian scheme [24]. Additionally,
the numerical schemes using the <nite-element method include the Eulerian–Lagrangian linked
Galerkin scheme [25], the dissipative Galerkin scheme [26–28], Petrov–Galerkin scheme
[18; 29], Taylor–Galerkin scheme [30], and Addcollocation scheme [31]. Additionally, the
explicit scheme by Cheng-lung Chen mentioned above used the characteristics method.
The numerical schemes used for solving the dam-break problem face severe challenges

when they are applied to cases characterized by large upstream water depths (hu) in the
reservoirs and small downstream water depths (hd) in the channels. A mixed-�ow regime
(i.e., supercritical and subcritical �ows co-exist) occurs for �ows in the horizontal, frictionless
channels when the value of hd=hu is smaller than 0.138 [32]. This �ow regime is diMcult to
be handled by the numerical schemes. Furthermore, the height, shape, and celerity of the
simulated front under such a condition may signi<cantly deviate from the exact solution [11].
Under the extreme condition of dry bed (hd = 0); few of the above mentioned numerical
schemes [15; 33] can work because it is not easy to deal with the moving boundary condition
of zero water depth. To cope with this diMculty, a commonly used technique in numerical
computation is to assume that a minimum water depth or discharge exists on the dry bed of the
channel. As pointed out by Zhang et al. [34], the accumulated error due to this assumption as
the computation proceeds might eventually distort the solutions and hence render the numerical
solution near the wave front doubtful. Therefore, Zhang et al. [34] proposed an implicit
staggered-grid scheme, analogous to the SIMPLER method [35], to analyze the dam-break
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problems on dry beds. Bellos and Sakkas [36] employed the explicit MacCormack scheme
with an expedient treatment to determine the computational grid at the boundary, wet or dry,
to solve the same problem. Moreover, Di Monaco and Molinaro [37] developed a Lagrangian
model for simulating the dam-break waves on dry beds using the <nite-element method.
The purpose of this paper is to propose an iterative explicit characteristics-based <nite-

di=erence scheme suitable for the computation of surges and dam-break waves propagating
both in rectangular, horizontal, and frictionless channels and in sloped, and frictional channels.
The proposed scheme is a modi<cation of the explicit <nite analytic (FA) method, which
was <rst employed by Dai [38] for the computation of 2D and 3D cavity �ows. In his
scheme, based on the �ow conditions of the previous time step, the convective transport
equation is solved with a local analytic solution and the viscous di=usion and source terms are
approximated by the <nite di=erences. In this paper, the time dependent variables, including
the linearized characteristic curve, are updated by the newly calculated �ow conditions in
the process of iterative computation during a time step. The superiorities of accuracy and
simpli<cation of the proposed scheme to other numerical schemes for the dam-break problem
can be seen under various cases as well as the most critical dry-bed case.

2. GOVERNING EQUATIONS

The 1D unsteady free-surface �ow in a wide rectangular channel without lateral �ow can be
described by the well-known Saint Venant equations, those based on the conservation of mass
and momentum of the conservative form:
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@q
@x

=0 (1)

@q
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+
@
@x

(
uq+

1
2
gh2
)
= gh(S0 − Sf ) (2)

where h is �ow depth; u is �ow velocity; q is volumetric �ow rate per unit width; t is time;
x is distance along the channel; g is gravitational acceleration; S0 is bed slope; and Sf is
frictional slope. The key assumptions in the governing equations are the hydrostatic pressure
distribution and small bed slope. The applicability of the Saint Venant equations to surges and
dam-break �ows with steep fronts, i.e., those with large surface curvatures, has been examined
by Basco [39]. He concluded that the Saint Venant equations are valid if the wave period
of the input hydrograph is greater than about 100 seconds. Fortunately, most �ood waves
resulting from dam breaks of practical interest have periods much larger than this value.
For open channel �ows with steep fronts, the convective terms in Equation (2) dominate.

Thus, Equation (2) can be written in the total derivative form based on the concept of the
characteristics method
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Figure 1. Sketch of characteristic curve and staggered-grid system.

where Dq=Dt is the total derivative of q along the characteristic curve described by
Equation (4). The explicit FA method [38] assumes that the variation of u in Equation (4)
and the source terms on the right-hand side of Equation (3) are relatively small in a given
time increment Stn (Figure 1), and can be simpli<ed as known constants. Consequently,
Equation (3) reduces to a linear hyperbolic partial di=erential equation and has the analytic
solution (q
2) at time step n if the initial condition (q
1) at the previous time step (n − 1)
is speci<ed. In such a case, the characteristic is a straight line. In this paper, however, the
time dependence of u and the source terms are further considered. Hence, the integration of
Equations (3) and (4) can be solved numerically and can be expressed as

q
2 − q
1 =
∫ t
2

t
1

−
(
gh

@h
@x

+ q
@u
@x

)
+ gh(So − Sf ) dt (5)

x
2 − x
1 =
∫ t
2

t
1

u dt (6)

where the subscripts 
1 and 
2 denote the foot and the head of the characteristic, respectively
(see Figure 1).

3. ITERATIVE EXPLICIT SCHEME

3.1. Discretization

To avoid the so-called ‘checkerboard’ phenomenon of the computational results, a staggered-
grid system (Figure 1) is used in the proposed iterative explicit scheme, which is also adopted
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in Dai’s approach [38]. Discretization of Equations (1) and (5) results in

hn′
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where
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N 2u2
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and N is Manning coeMcient; R is hydraulic radius; �n′(�= q; h or u) denotes the newly up-
dated value of the variables during the iteration at the present time step n; � is the weighting
factor in time; Stn is the time interval, which is determined by the Courant condition for
ensuring the stability of the explicit scheme; Sx is the subreach length; and �
1 is approxi-
mated by the linear interpolation of �n−1

i−1 and �n−1
i
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where x
1 is obtained from Equation (6) with the following approximation:

x
1 = xi − un′
i−1=2Stn (10)

Note that the source terms @h=@x and @u=@x in Equation (8) are discretized by the di=erence
scheme, which is represented by the symbol S∇. In the subcritical-�ow regime, a central
di=erence scheme is adopted to consider the physical phenomenon that the disturbance waves
travel both downstream and upstream. On the other hand, due to the unique direction of
the traveling disturbance waves in the supercritical-�ow regime, the above two terms are
discretized by the upwind scheme, i.e., forward or backward di=erence scheme according to
the direction of �ow velocity.

3.2. Boundary conditions

Unique discrete solutions at each cross-section of a channel at each time step, based on
Equations (7) and (8), exist when the initial and boundary conditions are properly speci<ed.
The initial conditions include the values of q and h at t=0. As for the boundary conditions,
it should be recalled that the only general technique available for dealing with the boundary
conditions is the method of characteristics [3; 5; 40] based on the equations:[
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where

c−= u−
√

gh; a−= − u−
√

gh;

c+ = u+
√

gh; a+ = − u+
√

gh:

When the �ow is supercritical, two boundary conditions related to q(t) and h(t), or q(h)
should be provided at the upstream boundary of the channel and Equations (11) and (12)
are used to determine the �ow conditions at the downstream boundary. When the �ow is
subcritical, one boundary condition should be provided at the upstream boundary and Equa-
tion (11) is used to determine the other �ow condition; same to the downstream boundary
but Equation (12) is used. The method has been applied to solve the seaward boundary in
predicting the �ow characteristics on rough slopes for speci<ed, normally incident wave trains
by Kobayashi et al. [40], and the external and internal boundaries for rapidly varying open
channel �ows by Garcia-Navarro and Saviron [5].
However, under subcritical �ow condition, it is usually diMcult to specify the downstream

boundary condition, especially for unsteady �ow, except that experimental or <eld measured
data can be obtained. The assumption of uniform �ow condition or the method of extrapolation
from the neighbouring points in the computational domain is taken to provide the boundary
condition in some numerical methods. In this paper, as will be described below, an approach
based on the characteristic concept is introduced to approximate the �ow variables, both q
and h, at downstream boundary.
In order to determine the two variables q and h at the downstream boundary, one more

equation is needed to be solved simultaneously with Equation (12). The continuity equation
is rewritten in the following form:

@h
@t

+ c
@h
@x

= − h
@u
@x

(c= u) (13)

Figure 2 shows the grid points and the two corresponding characteristic lines of Equation (12)
(labeled c+) and Equation (13) (labeled c) near the downstream end are shown. The values
of variables at points L and R have to be determined to make the solution progress to point
P at the present time step n. The algorithm is an iterative approximation technique and is
described as following:

(i) The position and corresponding variables of point R are calculated in the same way as
Equations (9) and (10) with the characteristic speed c.

(ii) Equation (13) is used to approximate the water depth at point P.

hP = hR − hR

(
un−1
M − un−1

M−1

Sx

)
St (14)

(iii) The position and corresponding variables of point L are calculated in the same way as
Equations (9) and (10) with the characteristic speed c+.

(iv) With the result of Step (ii), Equation (12) is used to approximate the discharge at
point P.

qP = qL − a+(hP − hL) + f (15)
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Figure 2. Sketch of characteristic curves near the downstream boundary.

where

f= gh(So − Sf )St

The values of c; c+; a+ and f are calculated by variables at point M for the <rst
approximation, and should be adjusted in the proceeding iterations to obtain the correct
�ow conditions. Hence the following steps:

(v) The values of c+; a+ and f are recalculated by averaging those at points L and P with
the last approximated dependent variables.

c+ =
1
2
[(u+

√
gh)L + (u+

√
gh)P]

a+ =
1
2
[(−u+

√
gh)L + (−u+

√
gh)P]

f=
1
2
g{[h(So − Sf )]L + [h(So − Sf )]P}

(vi) Repeat Steps (iii) to (v) until discharge at point P converges.
(vii) The value of c is recalculated by averaging the last approximated dependent variables

at points R and P.
(viii) Repeat Steps (i) to (vii) until the water depth at point P converges.

3.3. Algorithm

Given the proper initial conditions, the solution procedure of the proposed iterative explicit
scheme involves the following steps:

(i) Determine the �ow conditions at the boundaries.
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(ii) Estimate q
1 using Equations (9) and (10).
(iii) Compute qn′

2 ; qn′
3 ; : : : ; from Equation (8).

(iv) Compute hn′
3=2; h

n′
5=2; : : : ; from Equation (7), using the updated qn′

i (i=2; 3; : : :) from Step
(iii).

(v) Repeat Steps (ii) to (iv) until the following criterion is satis<ed:

|(qn′
i )new − (qn′

i )old|
(qn′

i )old
6�; for i=2; 3; : : : (16)

|(hn′
i+1=2)new − (hn′

i+1=2)old|
(hn′

i+1=2)old
6�; for i=1; 2; : : : (17)

where the subscripts ‘new’ and ‘old’ denote the present and the previous iterations,
respectively; and � is the allowable error, which was set to 10−6 in this study.

(vi) Let qn
i+1 = (qn′

i+1)new; hn
i+1=2 = (hn′

i+1=2)new, and un
i+1 = (un′

i+1)new; for i=1; 2; : : :
(vii) Repeat Steps (i) to (vi) for the next time Step (n+ 1).

3.4. Stability analysis

From Equations (9) and (10), it can be seen that the foot of the characteristics line, x
1,
must lie between xi and xi−1 to ensure the stability of the convection-dominated momentum
equation as shown in Equation (8). Therefore |u|St=Sx61 is a necessary condition for the
stability of Equation (8), which can be proved by the Fourier analysis with the Von Neumann
condition (see Appendix A).
Similar to other explicit numerical method applied to the open-channel �ow, the Courant

condition, de<ned as Cr=(|u|+√gh)St=Sx61 by the larger absolute value of the charac-
teristic speeds, u±√gh, is the limit on determining the time step. When the Courant condition
is satis<ed, the stability condition, |u|St=Sx61, for the proposed scheme will be satis<ed,
too. Hence the proposed scheme is proved to be valuable under the Courant condition.

4. ANALYTICAL SOLUTIONS

To examine the accuracy of the proposed scheme, the analytical solutions of surges and dam-
break �ows in horizontal, rectangular, and frictionless channels are used. The exact solution
of surge celerity (us) and surge height (h1) can be obtained by simultaneously solving the
following two equations based on the conservation of mass and momentum:

us =
q2 − q1
h2 − h1

(18)

us =

(
q22
h2

+
1
2
gh22

)
−
(
q21
h1

+
1
2
gh21

)
q2 − q1

(19)
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where the subscripts 1 and 2 represent the upstream and downstream sides of the surge,
respectively. For the dam-break problem, one needs an additional equation describing the
movement of the negative simple wave:

u− 2c= u0 − 2c0 = const: (20)

where u0 and c0 are the initial velocity and the surface-disturbance wave celerity in the
reservoir, respectively; and c=

√
gh. Thus, the water surface pro<le of the negative simple

wave can be determined by

dx
dt

= u+ c=3c+ u0 − 2c0 (21)

5. EXAMPLES AND SIMULATION RESULTS

The advantage of the proposed iterative explicit scheme is its simplicity in formulation and fast
convergence in numerical iterations. Nevertheless, two parameters, i.e., the Courant number
Cr and weighting factor � in Equations (7) and (8), in the proposed scheme need to be
examined for further applications. Suggestion of the two values is possible by comparing
the relative accuracy of the simulated results for cases to analytic solutions. To simplify the
analysis and to compare the numerical solutions with the exact solutions of surges and dam-
break �ows, bed slope and resistance are neglected <rst. The proposed scheme performs well
in the simulations of (1) downstream surge propagation due to the sudden opening of a gate,
(2) upstream surge propagation due to the sudden closure of a gate, and (3) dam-break �ow
in a wet or even dry downstream channel bed, when compared with the analytic solutions
and numerical solutions obtained by other schemes. Furthermore, to account for more realistic
�ow situation and to compare with the experimental data of dam-break �ow waves, bed slope
and resistance e=ects are taken into account.

5.1. Flows in a horizontal and frictionless channel

5.1.1. Sudden opening of a gate. The sudden opening of a gate to convey water into a chan-
nel from still waters at a constant depth results in the formation of a surge that propagates
downstream. Further opening of the gate will convey even more water and, consequently,
create a higher surge that will pass over the previous surge. Figure 3 sketches a gate or a
dam located somewhere in a channel. The example assumes that the gate is initially closed
with a still tailwater of 1m in depth (h2) and a surge of q1 = 20m2 s−1. According to Equa-
tions (18) and (19), one can <nd that us = 8:48m s−1 and h1 = 3:36m. The traveling distance
of the surge front can be determined by multiplying us by the elapsed time after the sudden
opening of the gate. Note that the surge propagation in this example is in the supercritical-
�ow regime and is more diMcult to solve from the viewpoint of numerical stability and
accuracy.
Numerical testing of various Cr’s and �’s based on the above example shows that Cr=0:5

and �=0:9 yield the best accuracy in comparison with the analytic solution. Therefore, these
two calibrated values are recommended for use in future analyzes on surge problems. Figure 4
demonstrates the simulated results for �=0:5; 0:7, and 0.9 given Cr=0:5 after 10 seconds
of gate opening; it can be seen that the phase error of the surge front slightly decreases
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Figure 3. Sketch of surge or dam-break problem.

Figure 4. Simulated results of surge propagation for Cr=0:5.

as � increases. On the other hand, Figure 5, as an illustration, shows the simulated re-
sults for Cr=0:4; 0:5, and 0.6 given �=0:9 at the same time as in Figure 4; the simulated
surge celerity is a little slower for the case of Cr=0:4, and is a little faster for the case
of Cr=0:6.
One of the other tested cases was used to demonstrate the validation of using Cr=0:5 and

�=0:9. Reducing q1 from 20m2 s−1 to 2m2 s−1 and keeping other conditions unchanged as
in the above example, exact values of us and h1 was determined to be 4:23m s−1 and 1:47m,
respectively. Figure 6 shows the simulated results of the proposed scheme and the Preissmann
scheme after 10 seconds of gate opening. The Preissmann scheme used a time-weighting factor

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:647–675
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Figure 5. Simulated results of surge propagation for �=0:9.

Figure 6. Comparison of simulated results for downstream propagating surge.

of 0.7 to avoid the numerical oscillations near the surge front. Time increment St=0:2 s was
used in the Preissmann scheme. Even though the Preissmann scheme is slightly more accurate
than the proposed scheme in the surge celerity, the simulated result by the proposed scheme
is still satisfactory compared with the analytic solution.
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Figure 7. Comparison of simulated results for upstream propagating surge.

5.1.2. Sudden closure of a gate. A uniform �ow is assumed to have q1 = 2m2 s−1 and
h1 = 2m in a channel. The sudden closure of a gate may occur at the downstream end of the
channel due to some unexpected reasons, e.g., an abrupt shutdown of a hydro-power plant
connected to the channel. Such an emergent operation of the gate will result in a upstream
propagating surge. The exact value us and h2 is 4:23m s−1 and 2:47m, respectively. The cal-
ibrated values of Cr=0:5 and �=0:9 for surge problems are used for the proposed scheme.
On the other hand, the time increment St and the time-weighting factor for the Preissmann
scheme is 0:15 s and 0.7, respectively. The space increment Sx is 1m for both schemes.
Figure 7 shows the simulated results by the proposed scheme and the Preissmann scheme
after 10 seconds of gate closure. It can be seen that the proposed scheme performs slightly
better than the Preissmann scheme with less phase error of the surge front. In this example,
the satisfactory simulated result validates the above calibrated parameters.

5.1.3. Dam-break /ow on wet bed. Computation of dam-break �ood waves resulting from
the sudden collapse of a dam is necessary for the dam-safety evaluation. The ratio of hd=hu
(Figure 3) is an important index to judge the applicability and accuracy of the numerical
schemes to the dam-break problem. As mentioned earlier, both subcritical- and supercritical-
�ow regimes exist simultaneously in a rectangular, horizontal, and frictionless channel when
hd=hu is smaller than 0.138 [32]. In such a mixed �ow regime, some of the existing schemes
will encounter the numerical stability problem. In particular, as can be seen later, the simu-
lation accuracy will usually decrease signi<cantly as hd=hu approaches zero for most of the
existing numerical schemes.
To compare the simulated results of the proposed scheme with that of other schemes, the

example in Jha et al. [11] will be used. In addition to Jha et al.’s �ux splitting scheme for
comparison, the results obtained by the MacCormack and the Gabutti schemes mentioned in
Jha et al. [11] will also be included. In the example, a 2000-m-long channel is assumed to
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Figure 8. Simulated results of dam-break �ow for Cr=0:7.

be separated by a dam located in the middle of the channel, as shown in Figure 3. The initial
depth (hu) in the reservoir is assumed to be 10m, and the tailwater depth (hd) is varied
with the ratios of hd=hu = 0:5; 0:05, and 0.005. As was pointed out by Jha et al. [11], the
MacCormack and the Gabutti schemes failed to execute when hd=hu was less than 0.05. If a
proper arti<cial di=usion term was added, both schemes could work, even for smaller ratios
of hd=hu. However, the Gabutti scheme would still fail when hd=hu was equal to or less than
0.005. Jha et al.’s �ux splitting scheme, on the other hand, has no limitations on hd=hu except
for the critical case of hd = 0.

Before comparing the performances of various numerical schemes, the proper values of Cr
and � in the proposed scheme for the dam-break �ows need to be examined <rst. The case
of hd=hu = 0:05 was used for calibrating the values of Cr and �. The distance increment (Sx)
used in the simulation was 5m, and this value was also adopted by the proposed scheme in
later analysis. By varying Cr and � for test cases, one can conclude that the simulated results
under Cr=0:7 and �=0:7 accurately <t the analytic solution. Hence, these two calibrated
values are recommended for use in further analyzes on dam-break problems. Figures 8 and 9
demonstrate that the shape and celerity of the dam-break wave are insensitive to both Cr
and � values. Figure 8 shows the variation of the solutions due to using di=erent �’s with
Cr=0:7. One can see that the simulated surge height and celerity are more accurate when
�=0:7. On the other hand, Figure 9 shows the variations of the solutions due to using di=er-
ent Cr’s with �=0:7. The best resolution of the simulated surge height and celerity occurs
when Cr=0:7.
Figures 10–12 illustrate the comparisons among the simulated results obtained by the pro-

posed scheme and the other schemes, as well as the analytic solutions, for hd=hu = 0:5; 0:05,
and 0.005, respectively. The superiority of the proposed scheme can be realized from these
comparisons. As shown in Figure 10(a), when hd=hu = 0:5, the Gabutti scheme yields the
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Figure 9. Simulated results of dam-break �ow for �=0:7.

numerical oscillations at the surge front and the slower celerity of the surge front com-
pared to the exact solution. Figure 10(b) shows the corresponding velocity distribution along
the channel when hd=hu = 0:5. The oscillations of the velocity near the surge front by the
Gabutti scheme are clearly observed. When hd=hu = 0:05, the errors in the location and the
height of the surge front obtained by the MacCormack and the Gabutti schemes, as can
be seen in Figure 11, are signi<cant. The results obtained by Jha et al.’s �ux splitting
scheme are similar to those obtained by the MacCormack scheme when hd=hu = 0:5 and
0.05, and thus are not shown in Figures 10 and 11. Figure 12 shows that Jha et al.’s
scheme performs less satisfactory than the MacCormack scheme when hd=hu = 0:005. Fur-
thermore, Figure 13 demonstrates the accuracy of the proposed scheme when hd=hu = 0:001.
Instead of using the �ux splitting scheme, Jha et al. [9] proposed another scheme based on
the modi<cations of the Beam-Warming scheme for the same dam-break example, except
that hu was changed to 15m. The simulated results were improved, as can be seen in their
paper.

5.1.4. Dam-break /ow on dry bed. As mentioned earlier, most of the existing numerical
schemes fail when the downstream channel of the dam is initially an dry bed, i.e., hd = 0.
However, the proposed scheme does not have such a limitation. We used the same dam-break
example above, but with the initial condition hd = 0, to demonstrate the capability of the
proposed scheme. Figure 14(a) and 14(b) show the simulated water-surface pro<le and the
corresponding velocity pro<le along the channel, respectively, after 50 s of dam failure.
The results obtained by the proposed scheme are still accurate compared with the analytic
solution. In order to compare with the results obtained by Zhang et al. [34] using an ana-
log of the SIMPLER method, we need to non-dimensionalize the ordinate and abscissa of
Figure 14(b) by dividing them by

√
ghu and t

√
ghu, respectively, where t is the time elapsed
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Figure 10. (a) Comparison of simulated water-surface pro<les for dam-break �ow with hd=hu = 0:5;
(b) comparison of simulated velocity pro<les for dam-break �ow with hd=hu = 0:5.

after the sudden dam break. Figure 15 shows the comparison of the simulated results of the
two schemes. Again, the excellent performance of the proposed scheme under the dry-bed
condition is observed.

5.2. Dam-break /ow on dry bed in a sloped and frictional channel

The examples demonstrated in the previous sections veri<ed the proposed scheme under the
condition of neglecting the e=ects of the bed and friction slope in the Saint Venant equation.
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Figure 11. (a) Comparison of simulated water-surface pro<les for dam-break �ow with hd=hu = 0:05;
(b) comparison of simulated velocity pro<les for dam-break �ow with hd=hu = 0:05.

By comparison with the analytic solutions, two important parameters Cr and � were examined.
With the suggested values of them, it has been found that the proposed scheme simulated most
the illustrated cases with excellent accuracy, even the critical �ow conditions. However, more
important, the capability of simulating �ow conditions in a sloped and frictional channel makes
the extension of the proposed model to practical applications possible and will be investigated
in the section.
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Figure 12. (a) Comparison of simulated water-surface pro<les for dam-break �ow with hd=hu = 0:005;
(b) comparison of simulated velocity pro<les for dam-break �ow with hd=hu = 0:005.

The laboratory data under WES test condition 1.1 in 1960–1961 [41] are used to verify the
simulated results of the proposed scheme, as well as Cheng-lung Chen’s scheme [43] devel-
oped on the basis of an explicit scheme of the characteristics method. WES conducted dam-
break �ood-wave experiments in a 400-ft (122-m) long, 4-ft (1.22-m) wide, sloped (0.005),
and rectangular �ume with a 1-ft (0.305-m) high model dam located midway of its length.
The model dam was lifted almost instantaneously by a pulley-weight system to simulate the
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Figure 13. (a) Simulated water-surface pro<le for dam-break �ow with hd=hu = 0:001; (b) simulated
velocity pro<le for dam-break �ow with hd=hu = 0:001.

sudden dam failure. Under WES test condition 1.1, width of breach is 4-ft (1.22-m), depth of
breach is 1-ft (0.305-m), and the channel roughness, Manning coeMcient, is 0.009. The values
of parameters Cr and � for the proposed scheme maintained 0.7 that was recommended in
the previous section.
Figure 16(a) and 16(b) show the water surface pro<les and their corresponding velocity

distributions at 0, 10, 20, 30, 50, 90, and 160 s after dam break, respectively. The initial
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Figure 14. (a) Simulated water-surface pro<le for dam-break �ow with hd = 0; (b) simulated velocity
pro<le for dam-break �ow with hd = 0.

condition in the channel downstream of the dam for the proposed method can be realized
from the <gures that real dry bed condition, i.e. u=0 and d=0, was given. This is not
the case for Chen’s scheme, in which a computer-simulated condition Qo for no initial �ow
was assumed to be 0.001 cfs. At the trailing edge in the receding part of the �ood near
the upstream end, the same negligibly small in�ow discharge Qo was also used to circum-
vent the singularity problem in Chen’s scheme. In addition, numerical noise occurs around
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Figure 15. Comparison of dimensionless velocity pro<les for dam-break �ow with hd = 0.

the front of the wave. The assumptions of small initial �ows are not needed in the pro-
posed scheme and numerical noise does not happen either, as can be seen in Figure 16(a)
and 16(b).
According to the classi<cation mentioned previously, Chen’s cheme is a ‘shock <tting’

method. The shock equations (often referred to as the Rankine–Hugoniot equations) are
adopted to determine the propogation velocity of the shock front, and the conjugate water
depths in back and front of the shock. By imposing shock equations, it has been assumed
that the �ow downstream of the shock front is always uniform under a given �ow rate.
Therefore, as imposed on a dry bed, shock equations become valid only under some assump-
tions of �ow immediately behind the leading edge. For example, Whitham [42] circumvented
this problem by assuming uniform �ow velocity in the direction of �ow behind the leading
edge.
However, the proposed scheme belongs to the ‘through’ method which solves the Saint

Venant equations directly without any particular treatment of the shock front. Figure 17 shows
the water depth hydrographs at six stations; three upstream the dam recording the negative
wave at x=100; 150 and 200 ft; three downstream the dam recording the positive wave at
x=225; 280 and 350 ft. The water depths obtained from the proposed and Chen’s schemes
are quite accurate at the upstream stations, and are also close at the downstream stations with
slightly small peak depth by the proposed scheme. The arrival time of the positive wave by
the proposed scheme at the downstream stations are a little closer to those of the measured
data. Figures 18 and 19 show the velocity and discharge hydrographs at the downstream
stations, respectively. It can be seen that the peak discharges and corresponding velocities by
the proposed scheme are slightly larger than those by Chen’s scheme. Of course, the arrival
time of the positive wave are the same as for depth hydrographs and still a little closer to
those of the measured data. In general, the two numerical schemes have similar performance
and have considerably reasonable results compared with the measured data.
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Figure 16. (a) Water-surface pro<les at di=erent time for �ood under WES test condition 1.1;
(b) velocity distributions at di=erent time for �ood under WES test condition 1.1.

6. CONCLUSIONS

The objective of this paper is to propose an iterative explicit scheme suitable for solving
1D unsteady open-channel �ow problems based on the Saint Venant equations, especially for
the surges and dam-break �ows. For each time step, the proposed scheme <rst solves the
momentum equation for discharge per unit width and then the continuity equation for water
depth, and the procedure is iterated until convergence is reached. A staggered-grid system
was adopted in the scheme to avoid the ‘checkerboard’ phenomenon.
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Figure 17. (a) Stage hydrographs at station x=100 ft for �ood under WES test condition 1.1; (b)
stage hydrographs at station x=150 ft for �ood under WES test condition 1.1; (c) stage hydrographs at
station x=200 ft for �ood under WES test condition 1.1; (d) stage hydrographs at station x=225 ft for
�ood under WES test condition 1.1; (e) stage hydrographs at station x=280 ft for �ood under WES
test condition 1.1; (f) stage hydrographs at station x=350 ft for �ood under WES test condition 1.1.
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Figure 17. (Continued).

To determine the parameters Cr and �, comparisons were made between the proposed
scheme and other schemes against the analytic solution for surge and dam-break �ows in the
horizontal, rectangular, and frictionless channel. For the surge problem, the suggested values

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:647–675



670 C.-T. HSU AND K.-C. YEH

Figure 18. Discharge hydrographs at stations (a) x=225 ft, (b) x=280 ft, (c) x=350 ft downstream of
breach for �ood under WES test condition 1.1.

for Cr and � in the proposed scheme were 0.5 and 0.9, respectively. For the dam-break
problem, the suggested Cr and � were both 0.7. Three ratios of hd=hu, i.e., 0.5, 0.05, and
0.005, were used. As hd=hu approached zero, the error associated with the predicted front
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Figure 19. Velocity hydrographs at stations (a) x=225 ft, (b) x=280 ft, (c) x=350 ft downstream of
breach for �ood under WES test condition 1.1.

height and celerity increased, except by the proposed scheme. In particular, when compared
with the results obtained by Zhang et al.’s [34] modi<ed SIMPLER scheme under the dry
bed condition, the proposed scheme still has satisfactory accuracy.
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Further investigations of the capability of the proposed scheme to more realistic channels
with bed slope and frictional e=ects were carried out to demonstrate the extension of this
scheme to other potential practical applications are possible. The laboratory data, WES test
condition 1.1 in 1960–1961 recording the �ow conditions of the dam-break �ood waves on
a dry bed, were used to verify the numerical schemes. Performance of the proposed scheme
is satisfactory compared with the measured data. Because of its algorithmic simplicity and its
accuracy for modeling surge and dam-break problems, the proposed scheme may serve as an
attractive alternative to other practical, unsteady open-channel problems.

APPENDIX A

The iterative, explicit, characteristics-based <nite-di=erence scheme, Equation (8), for the Saint
Venant dynamic equation is stable if [(|u|St)=(Sx)]61:
[Proof] Equation (8) is rewritten in the expression with the discharge q being the unknown

variable only.

qn′
j = q
1 + [�qn′

j + (1− �)q
1]C1 ·St

+[�qn′2
j + (1− �)q2
1]C2 ·St + S ·St (A1)

where C1 and C2 are regarded as constants, and S is the hydrostatic pressure term and is
neglected hereinafter in the proof. The Fourier transform taking r as the so-called ampli<cation
factor is de<ned as

qn
j =�rn(�)eijS x� (A2)

where � is the wave number, and r may be complex. Consider u being positive and !=
uSt=Sx61, the following inequality is obtained.

061− 4!(1− !) sin2
Sx�
2

61 (A3)

Taking the Fourier transforms of Equation (A1) without the term SSt yields

r = (1− !) + !e−iS x� + {�r′ + (1− �)[(1− !) + !e−iS x�]}C1 ·St

+ {�r′2eiS x� + (1− �)[(1− !)eiS x� + !]2 · e−iS x�} C2 ·St

= (1− !) + !e−iS x� + {�r′ + (1− �)[(1− !) + !e−iS x�]} C1 ·St

+ {�r′2eiSx� + (1− �)(1− !) · [(1− !)eiSx� + !]

+ (1− �)! · [(1− !) + !e−iSx�]} C2 ·St

where r′ is the ampli<cation factor between the discharge newly updated during iterations
and that of the previous time step, and equals one for the <rst iteration. With the following
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relations

|!+ (1− !)eiSx�|= |(1− !) + !e−iSx�|=
[
1− 4!(1− !) sin2

Sx�
2

]1=2
the magnitude of the ampli<cation factor is

|r|6
[
1− 4!(1− !) sin2

Sx�
2

]1=2

+

{
�|r′|+ (1− �)

[
1− 4!(1− !) sin2

Sx�
2

]1=2}
C1 ·St

+

{
�|r′|2 + (1− �)(1− !) ·

[
1− 4!(1− !) sin2

Sx�
2

]1=2

+ (1− �)! ·
[
1− 4!(1− !) sin2

Sx�
2

]1=2}
C2 ·St

6 1 + C1 ·St + C2 ·St

= 1+O(St)

By the Von Neumann condition, the scheme is stable. The other case of negative u can be
proved to be stable likewise.
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